The strategy trades Chinese commodity futures, forming a long-short portfolio based on 12-month returns, rebalanced monthly, employing Gradual Rolling, and excluding low-volume contracts for practical investability.

I. STRATEGY IN A NUTSHELL

The strategy trades Chinese commodity futures using 12-month cross-sectional momentum, forming long-short portfolios, applying gradual contract rolls, and rebalancing monthly for real-world liquidity.

II. ECONOMIC RATIONALE

Momentum arises from behavioral biases and macroeconomic risks, with rolling methods managing liquidity and capacity, enabling effective long-short futures strategies in China’s commodity markets.

III. SOURCE PAPER

Investable Commodity Premia in China [Click to Open PDF]

Robert J. Bianchi, Griffith University; John Hua Fan, Griffith University – Department of Accounting, Finance and Economics; Tingxi Zhang, Curtin University

<Abstract>

We investigate the investability of commodity risk premia in China. Previously documented standard momentum, carry and basis-momentum factors are not investable due to the unique liquidity patterns along the futures curves in China. However, dynamic rolling and strategic portfolio weights significantly boost the investment capacity of such premia without compromising its statistical and economic significance. Meanwhile, style integration delivers enhanced performance and improved opportunity sets. Furthermore, the observed investable premia are robust to execution lags, stop-loss, illiquidity, sub-period specifications, seasonality and transaction costs. They also offer portfolio diversification for investors. Finally, investable commodity premia in China reveal strong predictive ability with global real economic growth.

IV. BACKTEST PERFORMANCE

Annualised Return8.99%
Volatility12.05%
Beta-0.023
Sharpe Ratio0.74
Sortino RatioN/A
Maximum Drawdown-32.21%
Win Rate48%

V. FULL PYTHON CODE

from AlgorithmImports import *
#endregion
class MomentumCommodityPremiainChina(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2017, 1, 1)
        self.SetCash(100000)
        
        # NOTE: QC max cap of 100 custom symbols added => 50 commodities x2 contracts
        self.symbols:list[str] = [
            # 'ER','ME','RO','S','TC','WS','WT',    # empty
            
            'CU', 'A', 'AG', 'AL', 'AP', 'AU',
            'B', 'BB', 'BU', 'C', 'CF', 'CS',
            'CY', 'FB', 'FG', 'FU', 'HC', 'I',
            'IC', 'IF', 'IH', 'J', 'JD', 'JM', 
            'JR', 'L', 'LR', 'M', 'MA', 'NI',
            'OI', 'P', 'PB', 'PM', 'PP', 'RB',
            'RI', 'RM', 'RS', 'RU',  'SF', 'SM',
            'SN', 'SR', 'T', 'TF', 'V',
            'WR', 'ZN', 'Y'
            #  'ZC', 'TA', 'WH'
        ]
        
        self.period:int = 12 * 21
        self.SetWarmup(self.period, Resolution.Daily)
        self.price_data:dict = {}
        self.latest_update_date:dict = {}   # latest price data arrival time
        self.quantile:int = 2
        for symbol in self.symbols:
            # futures data
            sym:str = symbol + '3'  # erd contract
            data = self.AddData(QuantpediaChineseFutures, sym, Resolution.Daily)
            data.SetLeverage(5)
            data.SetFeeModel(CustomFeeModel())
            self.price_data[sym] = RollingWindow[float](self.period)
            self.latest_update_date[sym] = None
                
        self.recent_month = -1
    
    def OnData(self, data):
        momentum:dict[Symbol, float] = {}
        # store daily prices
        for near_c_symbol, _ in self.price_data.items():
            # store price data
            if near_c_symbol in data and data[near_c_symbol] and data[near_c_symbol].Value != 0:
                self.price_data[near_c_symbol].Add(data[near_c_symbol].Value)  # 3rd contract price
                self.latest_update_date[near_c_symbol] = self.Time.date()
                if self.IsWarmingUp: continue
                # rebalance date
                if self.Time.month != self.recent_month:
                    # check data arrival time
                    if (self.Time.date() - self.latest_update_date[near_c_symbol]).days > 5:
                        continue
                    # price data for both contracts are ready
                    if self.price_data[near_c_symbol].IsReady:
                        # calculate momentum from forward ratio rolled contracts
                        near_momentum:float = self.price_data[near_c_symbol][0] / self.price_data[near_c_symbol][self.period-1] - 1
                        momentum[near_c_symbol] = near_momentum
        # monthly rebalance
        if self.Time.month == self.recent_month:
            return
        self.recent_month = self.Time.month
        long:list[Symbol] = []
        short:list[Symbol] = []
        if len(momentum) >= self.quantile:
            # sort by momentum
            sorted_by_momentum = sorted(momentum.items(), key=lambda x: x[1], reverse=True)
            quantile:int = int(len(momentum) / self.quantile)
            # buying (selling) the half with the highest (lowest) return
            long = [x[0] for x in sorted_by_momentum][:quantile]
            short = [x[0] for x in sorted_by_momentum][-quantile:]
        # trade execution
        invested = [x.Key for x in self.Portfolio if x.Value.Invested]
        for symbol in invested:
            if symbol not in long + short:
                self.Liquidate(symbol)
        for symbol in long:
            self.SetHoldings(symbol, 1 / len(long))
        
        for symbol in short:
            self.SetHoldings(symbol, -1 / len(short))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaChineseFutures(PythonData):
    def GetSource(self, config, date, isLiveMode):
        return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/china/forward_ratio_rolled/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
    def Reader(self, config, line, date, isLiveMode):
        data = QuantpediaChineseFutures()
        data.Symbol = config.Symbol
        
        if not line[0].isdigit(): 
            return None
        split = line.split(';')
        
        data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
        data['close'] = float(split[1]) if split[1] != '' else 0 # unadjusted close
        data['adj_close'] = float(split[2]) if split[2] != '' else 0
        data['last_trade_month'] = int(split[3])
        data.Value = float(split[2]) if split[2] != '' else 0
        return data
# Custom fee model.
class CustomFeeModel(FeeModel):
    def GetOrderFee(self, parameters):
        fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
        return OrderFee(CashAmount(fee, "USD"))

VI. Backtest Performance

Leave a Reply

Discover more from Quant Buffet

Subscribe now to keep reading and get access to the full archive.

Continue reading