“该策略在宏观经济公告日投资于CRSP股票的最高和最低贝塔十分位数,买入高贝塔股票并卖空低贝塔股票,持仓一天。”

I. 策略概要

该策略侧重于CRSP股票中最高和最低贝塔十分位数,按其过去五年预排名CAPM贝塔进行排名。股票数量取决于多元化需求。头寸在宏观经济公告日(例如就业数据、通胀报告和联邦公开市场委员会会议)建立。在公告日,该策略买入最高贝塔十分位数的股票,并卖空最低贝塔十分位数的股票,持仓仅一天。这种方法旨在利用市场对宏观经济新闻的反应,使用贝塔作为风险因素来指导交易。

II. 策略合理性

该策略利用了公告日市场回报显著高于普通日的事实。使用基本线性回归和CAPM模型,证券市场线在公告日显示出显著的正斜率和不显著的截距。这证实了CAPM模型并解释了做多高贝塔股票和做空低贝塔股票的盈利能力。CAPM模型表明回报由贝塔因子驱动,截距(阿尔法)不显著。因此,该策略侧重于市场敞口(贝塔),通过交易高低贝塔股票来利用正斜率。

III. 来源论文

Post Macroeconomic Announcement Reversal [点击查看论文]

<摘要>

我们记录了在坏的宏观经济消息发布后的几天,股市继续下跌,并且证券市场线具有显著的负斜率。我们发现好的宏观经济消息发布后,回报持续的证据较弱。这些发现表明市场在公告日对坏消息反应不足。当中介资本稀缺且卖空限制更严格的股票中,反应不足更强,这与套利限制理论一致。新闻初始市场反应的这种不对称性夸大了公告溢价。使用更长的窗口来衡量公告回报会导致公告溢价不显著。

IV. 回测表现

年化回报10.37%
波动率8.79%
β值0.073
夏普比率1.18
索提诺比率-0.14
最大回撤N/A
胜率49%

V. 完整的 Python 代码

from AlgorithmImports import *
import numpy as np
from pandas.tseries.offsets import BDay
from scipy import stats
from data_tools import CustomFeeModel, SymbolData
from typing import List, Dict
from pandas.core.frame import dataframe
from pandas.core.series import Series
#endregion
class MacroeconomicAnnouncementBeta(QCAlgorithm):
    def Initialize(self) -> None:
        self.SetStartDate(2000, 1, 1)
        self.SetCash(100000)
        
        self.leverage: int = 5
        self.quantile: int = 10
        self.period: int = 5 * 12
        self.daily_period: int = 21
        self.days_offset: int = 1
        self.data: Dict[Symbol, SymbolData] = {}
        self.selected_symbols: List[Symbol] = []
        self.market: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
        self.data[self.market] = SymbolData(self.period)
        self.WarmUpSymbolPrices(self.market)
        
        csv_string_file: str = self.Download('data.quantpedia.com/backtesting_data/economic/economic_announcements.csv')
        dates: List[str] = csv_string_file.split('\r\n')
        before_announcement_dates: List[datetime.date] = [(datetime.strptime(x, '%Y-%m-%d') - BDay(self.days_offset)).date() for x in dates]
        self.fundamental_count: int = 500
        self.fundamental_sorting_key = lambda x: x.DollarVolume
        self.sort_flag: bool = False
        self.selection_flag: bool = False
        self.settings.daily_precise_end_time = False
        self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
        self.UniverseSettings.Resolution = Resolution.Daily
        self.AddUniverse(self.FundamentalSelectionFunction)
        self.Schedule.On(self.DateRules.On(before_announcement_dates), self.TimeRules.AfterMarketOpen(self.market), self.DayBeforeAnnouncement)
        self.Schedule.On(self.DateRules.MonthEnd(self.market), self.TimeRules.AfterMarketOpen(self.market), self.Selection)
    def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
        for security in changes.AddedSecurities:
            security.SetFeeModel(CustomFeeModel())
            security.SetLeverage(self.leverage)
    def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
        # monthly selection
        if not self.selection_flag:
            return Universe.Unchanged
        self.selection_flag = False
        
        selected: List[fundamental] = []
        self.selected_symbols.clear()
        for stock in fundamental:
            symbol: Symbol = stock.Symbol
            
            if symbol in self.data and self.data[symbol].is_last_month_price_ready():
                self.data[symbol].update_monthly_return(stock.AdjustedPrice)
            if stock.HasFundamentalData:
                selected.append(stock)
        
        if len(selected) > self.fundamental_count:
            selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]]
        
        for stock in selected:
            symbol: Symbol = stock.Symbol
            if symbol not in self.data:
                self.data[symbol] = SymbolData(self.period)
                self.WarmUpSymbolPrices(symbol)
            if self.data[symbol].is_ready():
                self.selected_symbols.append(symbol)
        return self.selected_symbols     
    
    def OnData(self, data: Slice) -> None:
        self.Liquidate()
        
        # sort one day before earnings annoucement
        if not self.sort_flag or len(self.selected_symbols) == 0:
            return
        self.sort_flag = False
    
        # make sure there is n years of SPY monthly returns history
        if not self.data[self.market].is_ready():
            return
        market_monthly_returns: List[float] = self.data[self.market].get_monthly_returns()
        
        beta: Dict[Symbol, float] = {}
        for symbol in self.selected_symbols:
            if symbol in data and data[symbol]:
                stock_monthly_returns: List[float] = self.data[symbol].get_monthly_returns()
                
                # linear regression - X = market returns, Y = stock returns
                slope, intercept, r_value, p_value, std_err = stats.linregress(market_monthly_returns, stock_monthly_returns)
                beta[symbol] = slope
            
        # check if there are enough stocks for selection
        if len(beta) < self.quantile:
            self.Liquidate()
            return
        
        # beta sorting
        quantile: int = int(len(beta) / self.quantile)
        sorted_by_beta: List[Symbol] = [x[0] for x in sorted(beta.items(), key=lambda item: item[1])]
        long: List[Symbol] = sorted_by_beta[-quantile:]
        short: List[Symbol] = sorted_by_beta[:quantile]
    
        # trade execution
        targets: List[PortfolioTarget] = []
        for i, portfolio in enumerate([long, short]):
            for symbol in portfolio:
                if symbol in data and data[symbol]:
                    targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
        
        self.SetHoldings(targets, True)
        
    def WarmUpSymbolPrices(self, symbol: Symbol) -> None:
        history: dataframe = self.History([symbol], self.daily_period * self.period, Resolution.Daily)
        if history.empty:
            return
        
        closes: Series = history.loc[symbol].close
        closes_grouped: Series = closes.groupby(pd.Grouper(freq='M')).last()
        for close in closes_grouped:
            self.data[symbol].update_monthly_return(close)
    def Selection(self) -> None:
        self.selection_flag = True
        
    def DayBeforeAnnouncement(self) -> None:
        self.sort_flag = True

发表评论

了解 Quant Buffet 的更多信息

立即订阅以继续阅读并访问完整档案。

继续阅读