
“该策略交易纽约证券交易所(NYSE)、美国证券交易所(AMEX)和纳斯达克(NASDAQ)的综合企业,使用基于独立公司表现的伪综合企业,做多表现最好的十分位股票,做空表现最差的股票,并每月重新平衡等权重的投资组合。”
资产类别: 股票 | 地区: 美国 | 周期: 每月 | 市场: 股票 | 关键词: 复杂性
I. 策略概要
该策略以纽约证券交易所(NYSE)、美国证券交易所(AMEX)和纳斯达克(NASDAQ)的股票为目标,排除股价低于5美元或市值低于NYSE第10百分位的公司。公司被分类为独立公司(80%以上的销售来自单一行业)或综合企业(在多个行业运营,80%以上的合并子公司销售来自不同领域)。每年6月底,为每个综合企业构建一个“伪综合企业”,通过复制其行业细分并按每个细分的销售百分比加权。每月,根据前一个月伪综合企业的回报将综合企业排序为十分位。策略在表现最好的十分位做多,在最差的十分位做空,并每月重新平衡等权重仓位。
II. 策略合理性
该策略的基础,如“简短描述”部分所述,源于投资者有限的处理能力、资本约束以及难以处理复杂信息的挑战,这些因素导致新信息在资产价格中的反映存在滞后。新信息首先体现在容易分析的公司(单一行业运营者)的价格上,然后才会反映到更复杂公司的价格中(如综合企业)。因此,单一行业公司投资组合的表现可以作为综合企业回报的预测指标。
III. 来源论文
Complicated Firms [点击查看论文]
- Lauren Cohen 和 Dong Lou。哈佛大学商学院 (HBS);国家经济研究局 (NBER)。伦敦政治经济学院。
<摘要>
我们利用了一个新颖的设定,在这个设定中,相同的信息影响了两组公司:一组公司可以通过简单处理来更新价格,而另一组公司则需要更复杂的分析才能将相同的信息纳入价格。我们发现,从易于分析的公司到其更复杂的同行之间存在显著的回报预测性。具体而言,利用这种简单与复杂信息处理分类的简单投资组合策略每月获得118个基点的回报。与处理复杂性驱动回报关系一致,我们进一步展示了公司复杂度越高,回报预测性越强。此外,我们发现,卖方分析师也受到相同信息处理约束,他们对易于分析公司的预测修正可以预测他们对更复杂公司的未来修正。


IV. 回测表现
| 年化回报 | 15.12% |
| 波动率 | 14.54% |
| β值 | -0.085 |
| 夏普比率 | 1.04 |
| 索提诺比率 | 0.287 |
| 最大回撤 | N/A |
| 胜率 | 51% |
V. 完整的 Python 代码
from AlgorithmImports import *
from pandas.core.frame import DataFrame
from pandas.core.series import Series
from collections import deque
from typing import List, Dict, Tuple
import json
# endregion
class ComplexityEffectInStocks(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2015, 1, 1)
self.SetCash(100_000)
self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE']
universe: List[str] = [
'HON', 'MMM', 'VMI', 'MDU', 'SEB', 'GFF', 'VRTV', 'CODI', 'BBU', 'MATW', 'SPLP', 'CRESY', 'TRC', 'FIP', 'TUSK', 'RCMT', 'ALPP', 'NNBR', 'EFSH'
]
market: Symbol = self.AddEquity("SPY", Resolution.Daily).Symbol
self.period: int = 21
self.quantile: int = 10
self.leverage: int = 10
self.selection_month: int = 6
self.current_year: int = -1
self.data: Dict[Symbol, deque[Tuple[datetime.date, float]]] = {}
self.weight: Dict[Symbol, float] = {}
self.long: List[str] = []
self.short: List[str] = []
self.selection_flag: bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.settings.daily_precise_end_time = False
self.Schedule.On(self.DateRules.MonthStart(market), self.TimeRules.AfterMarketOpen(market), self.Selection)
for ticker in universe:
data: Equity = self.AddEquity(ticker, Resolution.Daily)
data.SetLeverage(self.leverage)
# load conglomerate segments percentages
# DataSource: annual report from company's website or SEC website
content: str = self.Download("data.quantpedia.com/backtesting_data/economic/conglomerate_revenue_segments.json")
self.custom_data: Dict[str, dict] = json.loads(content)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
# update the price every day
for stock in fundamental:
symbol:Symbol = stock.Symbol
if symbol in self.data:
self.data[symbol].append((self.Time, stock.AdjustedPrice))
if not self.selection_flag:
return Universe.Unchanged
selected:List[Symbol] = [
x for x in fundamental
if x.HasFundamentalData
and x.Market == 'usa'
and x.SecurityReference.ExchangeId in self.exchange_codes
and x.AssetClassification.MorningstarIndustryGroupCode != 0
and x.MarketCap != 0
]
# warmup price rolling windows
for stock in selected:
symbol: Symbol = stock.Symbol
if symbol in self.data:
continue
self.data[symbol] = deque(maxlen=self.period)
history: DataFrame = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
data: Series = history.loc[symbol]
for time, row in data.iterrows():
if 'close' in row:
self.data[symbol].append((time, row['close']))
if self.current_year != self.Time.year and self.Time.month == self.selection_month:
self.current_year = self.Time.year
if len(selected) != 0:
# create dataframe from saved prices
industry_stocks: Dict[Symbol, List[float]] = {symbol: [i[1] for i in value] for symbol, value in self.data.items() if symbol in list(map(lambda x: x.Symbol, selected)) if len(self.data[symbol]) == self.data[symbol].maxlen}
df_stocks: DataFrame = pd.DataFrame(industry_stocks, index=[i[0] for i in list(self.data.values())[0]])
df_stocks = (df_stocks.iloc[-1] - df_stocks.iloc[0]) / df_stocks.iloc[0]
# sort stocks on industry numbers
symbols_by_industry: Dict[str, List[Symbol]] = {}
for stock in selected:
symbol: Symbol = stock.Symbol
industry_group_code: MorningstarIndustryGroupCode = str(stock.AssetClassification.MorningstarIndustryGroupCode)
if not industry_group_code in symbols_by_industry:
symbols_by_industry[industry_group_code] = []
symbols_by_industry[industry_group_code].append(symbol)
# create pseudo conglomerates
pseudo_conglomerates: Dict[str, float] = {}
if not df_stocks.empty:
for conglomerate, lst in self.custom_data.items():
for year in lst:
if year['year'] == str(self.current_year - 1):
for segment_data in year['codes']:
industry_code:str = segment_data.get('code')
if industry_code and not isinstance(industry_code, list):
if industry_code in symbols_by_industry and segment_data.get('percentage') is not None:
industry_stocks:List[Symbol] = symbols_by_industry[industry_code]
industry_stocks_perf:float = df_stocks[list([x for x in industry_stocks if x in df_stocks])].mean() * (segment_data['percentage'] / 100)
if not conglomerate in pseudo_conglomerates:
pseudo_conglomerates[conglomerate] = 0
pseudo_conglomerates[conglomerate] += industry_stocks_perf
elif industry_code and isinstance(industry_code, list):
for ind_code in industry_code:
if ind_code in symbols_by_industry and segment_data.get('percentage') is not None:
industry_stocks = symbols_by_industry[ind_code]
industry_stocks_perf = df_stocks[list([x for x in industry_stocks if x in df_stocks])].mean() * ((segment_data['percentage'] / 2) / 100)
if not conglomerate in pseudo_conglomerates:
pseudo_conglomerates[conglomerate] = 0
pseudo_conglomerates[conglomerate] += industry_stocks_perf
# sort by conglomerate and divide to upper decile and lower decile
if len(pseudo_conglomerates) >= self.quantile:
sorted_by_conglomerates: List[str] = sorted(pseudo_conglomerates, key=pseudo_conglomerates.get, reverse=True)
quantile: int = int(len(sorted_by_conglomerates) / self.quantile)
self.long = sorted_by_conglomerates[:quantile]
self.short = sorted_by_conglomerates[-quantile:]
return list(map(lambda x: self.Symbol(x), self.long + self.short))
def OnData(self, data: Slice) -> None:
# monthly rebalance
if not self.selection_flag:
return
self.selection_flag = False
targets: List[PortfolioTarget] = []
for i, portfolio in enumerate([self.long, self.short]):
for symbol in portfolio:
if symbol in data and data[symbol]:
targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
self.SetHoldings(targets, True)
self.long.clear()
self.short.clear()
def Selection(self) -> None:
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))