from AlgorithmImports import *
from scipy.optimize import minimize
import data_tools
#endregion
class MeanVarianceFactorTiming(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(100000)
self.period:int = 60 * 21
# warm up fama french values for idiosyncratic volatility
self.SetWarmup(self.period, Resolution.Daily)
self.data:dict = {}
self.fama_french_symbol:Symbol = self.AddData(data_tools.QuantpediaFamaFrench, 'fama_french_5_factor', Resolution.Daily).Symbol
self.ff_factor_names:list[str] = ['market', 'size', 'value', 'profitability', 'investment']
# ff performance data
self.fama_french_data:dict = { ff_factor_name : RollingWindow[float](self.period) for ff_factor_name in self.ff_factor_names }
# ff traded symbols
for factor_name in self.ff_factor_names:
data:Security = self.AddData(data_tools.QuantpediaFamaFrenchEquity, f'fama_french_5_{factor_name}_eq', Resolution.Daily)
data.SetLeverage(3)
data.SetFeeModel(data_tools.CustomFeeModel())
self.recent_month:int = -1
def OnData(self, data):
# update fama french values on daily basis
if self.fama_french_symbol in data and data[self.fama_french_symbol]:
for ff_factor_name in self.ff_factor_names:
self.fama_french_data[ff_factor_name].Add(data[self.fama_french_symbol].GetProperty(ff_factor_name))
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
# optimization
if all(x[1].IsReady for x in self.fama_french_data.items()):
perf_df:pd.DataFrame = pd.DataFrame(columns=self.ff_factor_names)
for ff_factor_name in self.ff_factor_names:
perf_df[ff_factor_name] = np.array([x for x in self.fama_french_data[ff_factor_name]][::-1])
opt, weights = self.optimization_method(perf_df)
for ff_factor_symbol, w in weights.items():
traded_symbol:str = f'fama_french_5_{ff_factor_symbol}_eq'
if abs(w) > 0.001:
self.SetHoldings(traded_symbol, w)
else:
self.Liquidate(traded_symbol)
def optimization_method(self, returns:pd.DataFrame):
'''Maximize sharpe ratio method'''
# objective function
fun = lambda weights: - np.sum(returns.mean() * weights) * 252 / np.sqrt(np.dot(weights.T, np.dot(returns.cov() * 252, weights)))
# Constraint #1: The weights can be negative, which means investors can short a security.
constraints = [{'type': 'eq', 'fun': lambda w: 1 - np.sum(w)}]
size = returns.columns.size
x0 = np.array(size * [1. / size])
# bounds = tuple((self.minimum_weight, self.maximum_weight) for x in range(size))
bounds = tuple((0, 1) for x in range(size))
opt = minimize(fun, # Objective function
x0, # Initial guess
method='SLSQP', # Optimization method: Sequential Least SQuares Programming
bounds = bounds, # Bounds for variables
constraints = constraints) # Constraints definition
return opt, pd.Series(opt['x'], index = returns.columns)